CHROM. 15,977

GAS-LIQUID CHROMATOGRAPHIC ANALYSES

XVI*. DETERMINATION OF MONOCHLORINATED PRODUCTS FORMED IN LIQUID-PHASE CHLORINATION OF C_9-C_{12} , C_{14} , C_{16} AND C_{18} *n*-ALKYL ACETATES ON SE-30 AND OV-351 QUARTZ CAPILLARY COLUMNS WITH TEMPERATURE PROGRAMMING

ILPO O. O. KORHONEN

Department of Chemistry, University of Jyväskylä, Kyllikinkatu 1-3, SF-40100 Jyväskylä 10 (Finland) (Received May 9th, 1983)

SUMMARY

Aliphatic $C_{9}-C_{18}$ *n*-alkyl acetates were chlorinated with chlorine in the liquid phase in order to obtain monochlorinated products. The products were determined by gas chromatography using non-polar (SE-30) and polar (OV-351) capillary columns. All of the chloro isomers of $C_{9}-C_{11}$ homologues are resolvable on OV-351; for longer chain lengths ($C_{12}-C_{18}$), the peaks of the mid-chain isomers from the 6-chloro to the (ω - 5)-chloro isomer overlap. On SE-30, additional overlappings of the (ω - 1)- and (ω - 2)-chloro isomers of all esters are detected, however. The retention behaviour of a mixture of all 97 components on polar and non-polar stationary phases was studied and the retention order is discussed. The SE-30 column separated the mixture better, the parent esters and their 1-chloro and ω -chloro isomers showing the greatest difference in the retention order between the columns used.

INTRODUCTION

The chlorination of C_2-C_8 *n*-alkyl acetates, chloroacetates, dichloroacetates and trichloroacetates has recently been reported^{1,2}. The gas chromatographic (GC) retention behaviour of these chlorinated short-chain esters has been discussed in earlier parts of this series^{3,4}.

This paper describes a GC study of homologous series of aliphatic *n*-alkyl acetates (CH₃COOR), where the carbon number of the alcohol chain (R) varied between 9 and 18. The separation of a mixture of the parent esters and their isomeric monochlorinated derivatives was performed on an SE-30 and an OV-351 quartz capillary column with temperature programming. The retention data for all 97 components are tabulated relative to the parent esters and relative to *n*-tetradecane. The

0021-9673/83/\$03.00 © 1983 Elsevier Science Publishers B.V.

^{*} For Part XV, see I. O. O. Korhonen, J. Chromatogr., 257 (1983) 122.

retention order of the derivatives is discussed and the isomer distributions, formed in the liquid-phase chlorinations, based on GC analyses are given.

EXPERIMENTAL

Samples

 C_9-C_{12} , C_{14} , C_{16} and C_{18} *n*-alkyl acetates were prepared from commercial alcohols (Fluka, Buchs, Switzerland) and acetyl chloride (Fluka) as described earlier⁵. The monochlorinated alkyl acetates were obtained by chlorination of the corresponding parent esters with chlorine in the liquid phase at room temperature⁶. After removal of excess of the chlorination reagent and the liberated hydrogen chloride, the crude reaction mixtures were analysed by GC. The amounts of the higher chlorinated derivatives varied between 3 and 5% of the amounts of monochloro derivatives.

Apparatus

GC analyses were performed with a Perkin-Elmer Sigma 3 gas chromatograph under the following operating conditions: injector and detector (flame-ionization) temperatures, 275°C; carrier gas (nitrogen) flow-rate, 1 ml min⁻¹; splitting ratio, 1:50; and chart speed, 10 mm min⁻¹. The following columns were used: a vitreous silica SE-30 wall-coated open-tubular (WCOT) column (25 m \times 0.33 mm I.D.), supplied by SGE (North Melbourne, Australia), and a fused silica OV-351 WCOT column (25 m \times 0.32 mm I.D.), supplied by Orion Analytica (Espoo, Finland). The column temperature was programmed from 50°C at 6°C min⁻¹ and held at the final temperature of 260°C (SE-30) and 230°C (OV-351) until elution of peaks had ceased.

The chromatographic data were analysed with a Hewlett-Packard Model 3390A reporting integrator using standard programs.

RESULTS AND DISCUSSION

Gas chromatography

The isomeric monochlorinated *n*-alkyl acetates are eluted in direct order from the 1-chloro to the ω -chloro isomer both on polar and non-polar stationary phases³. As previously shown with short-chain (C₁-C₈) *n*-chloroalkyl acetates, the complete separation of the isomeric esters could be achieved on polar columns, whereas on SE-30 the peaks of 6-chlorooctyl and 7-chlorooctyl acetate partly overlapped^{3,4}.

The present results show that all of the isomeric C_9 , C_{10} and C_{11} monochlorinated esters are resolvable on OV-351 and with increasing the chain length (C_{12} - C_{18}) the peaks of the mid-chain isomers from the 6-chloro to the (ω - 5)-chloro isomer always overlap. The same phenomenon has been found previously with methyl and chloromethyl monochloro esters of aliphatic C_{12} - C_{18} *n*-carboxylic acids, analysed on polar columns^{7,8}. On SE-30, however, complete separation of the isomers could not be achieved, as expected, judging from the results of the incomplete resolution of *n*chlorooctyl acetates^{3,4}. With the C_9 - C_{11} esters, the (ω - 1)- and (ω - 2)-chloro isomers are the only isomers that overlapped, poor separation of 6- and (ω - 5)chloroundecanoates also being detected. The mid-chain isomers of the C_{12} - C_{18} esters overlapped, as they do on OV-351.

The gas chromatograms of the mixture of C_9-C_{18} n-alkyl acetates and their

22

monochlorinated derivatives with *n*-tetradecane obtained on SE-30 and OV-351 are illustrated in Figs. 1 and 2, respectively. The retention data of the compounds are given in Table I. As shown, a non-polar column separated the mixture of all 97 components better than a polar column, although some overlappings occurred in addition to those mentioned above. Fig. 1 shows that C_n parent esters $(n \ge 11)$ always overlap with the mid-chain chloro isomers of the C_{n-2} ester, whereas on OV-351 the overlappings with the parent esters are negligible, owing to their earlier elution compared with chlorinated isomers (Fig. 2). Only two additional overlappings between the chloro esters on SE-30 are found, *i.e.*, 10-chlorodecyl acetate (21) with 3chloroundecyl acetate (25) and 11-chloroundecyl acetate (33) with 3-chlorododecyl acetate (37). The several overlappings that occurred on OV-351 are illustrated in Fig. 2, showing, *e.g.*, that none of the 1-chloro isomers is resolved.

Table II gives the elution order of the compounds. As shown, the parent esters and their 1-chloro and ω -chloro derivatives give rise to the greatest difference in elution orders between the columns used. The parent esters have relatively high retention times on SE-30 and their monochlorinated isomers are eluted close together, *e.g.*, all C₁₄ isomers before the C₁₆ isomers and all C₁₆ isomers before the C₁₈ isomers, as shown in Fig. 1. On OV-351, however, the 1-chloro isomers are eluted relatively early, whereas for the ω -chloro isomers relatively long retention times are observed *e.g.*, 1-chlorotetradecyl acetate (48) eluted before 10-chlorododecyl acetate (44) and 14-chlorotetradecyl acetate (61) after 2-chlorohexadecyl acetate (64) (Fig. 2 and Table II).

The last column in Table I shows that longer retention times of compounds on SE-30 are found, except for compounds 10 and 97, 18-chlorooctadecyl acetate (97) being eluted earlier on SE-30 owing to the higher final temperature used. As previously reported, longer retention times of C_1-C_8 *n*-alkyl acetates on OV-351 are always detected⁴.

TABLE I

ABSOLUTE (ART) AND RELATIVE RETENTION TIMES (RRT) OF ALIPHATIC C₉–C₁₈ n-ALKYL ACETATES AND THEIR MONOCHLORINATED DERIVATIVES ON SE-30 AND OV-351 QUARTZ CAPILLARY COLUMNS

Peak	n-Alkyl acetate:	Column							
NO.	R in CH ₃ COOR	SE-30	SE-30			OV-351			
7		ART*	RRT**	<i>RRT</i> ***	ART*	RRT**	RRT***	RRT	
1	Nonyl	19.10	1.00	0.88	14.90	1.00	1.34	0.78	
2	1-Chlorononyl	21.86	1.14	1.01	18.71	1.26	1.68	0.86	
3	2-Chlorononyl	22.43	1.17	1.04	20.01	1.34	1.80	0.89	
4	3-Chlorononyl	22.85	1.20	1.06	20.81	1.40	1.87	0.91	
5	4-Chlorononyl	23.09	1.21	1.07	21.30	1.43	1.92	0.92	
6	5-Chlorononyl	23.29	1.22	1.08	21.58	1.45	1.94	0.93	
7	6-Chlorononyl	23.50	1.23	1.09	21.81	1.46	1.96	0.93	
8	7-Chlorononyl	23.83	1.25	1.10	22.28	1.50	2.01	0.93	
9	8-Chlorononyl	23.87	1.25	1.11	22.43	1.51	2.02	0.93	
10	9-Chlorononyl	24.95	1.31	1.16	25.06	1.68	2.26	1.00	

Conditions as shown in Figs. 1 and 2.

(Continued on p. 24)

TABLE I (continued)

Peak No	n-Alkyl acetate: R in CH, COOR	Column						
NO.	K in Ch3COOK	SE-30			OV-351			
		ART*	RRT**	RRT***	ART*	RRT**	RRT***	RRT
11	Decyl	21.40	1.00	0.99	16.80	1.00	1.51	0.79
12	1-Chlorodecyl	24.04	1.12	1.11	20.50	1.22	1.85	0.85
13	2-Chlorodecyl	24.60	1.15	1.14	21.75	1.29	1.96	0.88
14	3-Chlorodecyl	25.01	1.17	1.16	22.51	1.34	2.03	0.90
15	4-Chlorodecyl	25.21	1.18	1.17	23.00	1.37	2.07	0.91
16	5-Chlorodecyl	25.40	1.19	1.18	23.21	1.38	2.09	0.91
17	6-Chlorodecyl	25.58	1.20	1.18	23.42	1.39	2.11	0.92
18	7-Chlorodecyl	25.70	1.20	1.19	23.59	1.40	2.12	0.92
19	8-Chlorodecyl	26.00	1.21	1.20	24.00	1.43	2.16	0.92
20	9-Chlorodecyl	26.02	1.22	1.21	24.21	1.44	2.18	0.93
21	10-Chlorodecyl	27.07	1.26	1.25	25.59	1.52	2.30	0.95
22	Undecyl	23.61	1.00	1.09	18.69	1.00	1.68	0.79
23	1-Chloroundecyl	26.18	1.11	1.21	22.30	1.19	2.01	0.85
24	2-Chloroundecyl	26.71	1.13	1.24	23.50	1.26	2.12	0.88
25	3-Chloroundecyl	27.07	1.15	1.25	24.29	1.30	2.19	0.90
26	4-Chloroundecyl	27.29	1.16	1.26	24.71	1.32	2.22	0.91
27	5-Chloroundecyl	27.42	1.16	1.27	24.90	1.33	2.24	0.91
28	6-Chloroundecyl	27.56	1.17	1.28	25.06	1.34	2.26	0.91
29	7-Chloroundecyl	27.62	1.17	1.28	25.17	1.35	2.27	0.91
30	8-Chloroundecyl	27.73	1.17	1.28	25.29	1.35	2.28	0.91
31	9-Chloroundecyl	27.98	1.19	1.30	25.71	1.38	2.31	0.92
32	10-Chloroundecyl	28.00	1.19	1.30	25.90	1.39	2.33	0.93
33	11-Chloroundecyl	29.02	1.23	1.34	27.21	1.46	2.45	0.94
34	Dodecyl	25.72	1.00	1.19	20.50	1.00	1.86	0.80
35	1-Chlorododecyl	28.11	1.09	1.30	23.91	1.16	2.15	0.85
36	2-Chlorododecyl	28.65	1.11	1.33	25.15	1.23	2.26	0.88
37	3-Chlorododecyl	29.02	1.13	1.34	25.90	1.26	2.33	0.89
38	4-Chlorododecyl	29.20	1.14	1.35	26.35	1.29	2.37	0.90
39	5-Chlorododecyl	29.35	1.14	1.36	26.53	1.29	2.39	0.90
40	6-Chlorododecyl	29.49	1.15	1.37	26.70	1.30	2.40	0.91
41	7-Chlorododecyl	29.51	1.15	1.37	26.72	1.30	2.41	0.91
42	8-Chlorododecyl	29.62	1.15	1.37	26.82	1.31	2.41	0.91
43	9-Chlorododecyl	29.71	1.16	1.38	26.95	1.31	2.43	0.91
44	10-Chlorododecyl	29.98	1.17	1.39	27.40	1.34	2.47	0.91
45	11-Chlorododecyl	29.98	1.17	1.39	27.58	1.35	2.48	0.92
46	12-Chlorododecyl	30.91	1.20	1.43	28.89	1.41	2.60	0.93
47	Tetradecyl	29.60	1.00	1.37	23.96	1.00	2.16	0.81
48	1-Chlorotetradecyl	31.81	1.07	1.47	27.28	1.14	2.46	0.86
49	2-Chlorotetradecyl	32.33	1.09	1.50	28.46	1.19	2.56	0.88
50	3-Chlorotetradecyl	32.69	1.10	1.51	29.20	1.22	2.63	0.89
51	4-Chlorotetradecyl	32.86	1.11	1.52	29.60	1.24	2.66	0.90
52	5-Chlorotetradecyl	32.99	1.11	1.53	29.79	1.24	2.68	0.90
53	6-Chlorotetradecyl	33.10	1.12	1.53	29.93	1.25	2.69	0.90
54	7-Chlorotetradecyl	33.10	1.12	1.53	29.93	1.25	2.69	0.90
55	8-Chlorotetradecyl	33.19	1.12	1.54	29.97	1.25	2.70	0.90

GLC OF CHLORINATED n-ALKYL ACETATES

TABLE 1 (continued)

Peak	n-Alkyl acetate:	Column							
NO.	K in CH ₃ COUR	SE-30	SE-30			OV-351			
		ART*	RRT**	RRT***	ART*	RRT**	RRT***	RRT	
56	9-Chlorotetradecyl	33.23	1.12	1.54	30.00	1.25	2.70	0.90	
57	10-Chlorotetradecyl	33.29	1.12	1.54	30.09	1.26	2.71	0.90	
58	11-Chlorotetradecyl	33.39	1.13	1.55	30.20	1.26	2.72	0.90	
59	12-Chlorotetradecyl	33.60	1.14	1.56	30.65	1.28	2.76	0.91	
60	13-Chlorotetradecyl	33.60	1.14	1.56	30.81	1.29	2.77	0.92	
61	14-Chlorotetradecyl	34.48	1.16	1.60	32.28	1.35	2.91	0.94	
62	Hexadecyl	33.20	1.00	1.54	27.27	1.00	2.45	0.82	
63	1-Chlorohexadecyl	35.26	1.06	1.63	30.56	1.12	2.75	0.87	
64	2-Chlorohexadecyl	35.79	1.08	1.66	31.85	1.17	2.87	0.89	
65	3-Chlorohexadecyl	36.15	1.09	1,67	32.60	1.20	2.93	0.90	
66	4-Chlorohexadecyl	36.31	1.09	1.68	33.10	1.21	2.98	0.91	
67	5-Chlorohexadecyl	36.44	1.10	1.69	33.31	1.22	3.00	0.91	
68	6-Chlorohexadecvl	36.59	1.10	1.69	33.50	1.23	3.02	0.92	
69	7-Chlorohexadecyl	36.59	1.10	1.69	33.50	1.23	3.02	0.92	
70	8-Chlorohexadecyl	36.62	1.10	1.70	33.54	1.23	3.02	0.92	
71	9-Chlorohexadecvl	36.62	1.10	1.70	33.54	1.23	3.02	0.92	
72	10-Chlorohexadecyl	36.64	1.10	1.70	33.56	1.23	3.02	0.92	
73	11-Chlorohexadecyl	36.68	1.10	1.70	33.58	1.23	3.02	0.92	
74	12-Chlorohexadecvl	36.79	1.11	1.70	33.69	1.24	3.03	0.92	
75	13-Chlorohexadecyl	36.86	1.11	1.71	33.85	1.24	3.05	0.92	
76	14-Chlorohexadecvl	37.09	1.12	1.72	34.41	1.26	3.10	0.93	
77	15-Chlorohexadecvl	37.09	1.12	1.72	34.65	1.27	3.12	0.93	
78	16-Chlorohexadecyl	38.11	1.15	1.77	36.75	1.35	3.31	0.96	
79	Octadecvl	36.60	1.00	1.70	30.40	1.00	2.73	0.83	
80	1-Chlorooctadecvl	39.10	1.07	1.81	33.61	1.11	3.03	0.86	
81	2-Chlorooctadecyl	39.71	1.08	1.84	35.82	1.18	3.22	0.90	
82	3-Chlorooctadecyl	40.20	1.10	1.86	37.15	1.22	3 34	0.92	
83	4-Chlorooctadecyl	40.41	1.10	1.87	37.91	1.25	3.41	0.93	
84	5-Chlorooctadecyl	40.61	1.11	1.88	38.23	1.26	3 44	0.94	
85	6-Chlorooctadecyl	40.73	1.11	1.89	38.45	1.26	3 46	0.94	
86	7-Chlorooctadecyl	40.73	1.11	1.89	38.45	1.26	3 46	0.94	
87	8-Chlorooctadecyl	40.77	1.11	1.89	38.50	1.27	3 47	0.94	
88	9-Chlorooctadecyl	40.77	1.11	1.89	38.50	1.27	3 47	0.94	
89	10-Chlorooctadecyl	40.80	1 11	1.89	38-53	1.27	3 47	0.94	
9 <u>0</u>	11-Chlorooctadecyl	40.80	1 11	1.89	38.55	1.27	3.47	0.94	
91	12-Chlorooctadecyl	40.83	1.12	1 89	38.58	1.27	3.47	0.94	
92	13-Chlorooctadecyl	40.85	1.12	1 89	38.62	1.27	3 48	0.95	
03	14-Chlorooctadecyl	40.05	1 12	1.00	38 70	1.27	3.40	0.95	
94	15-Chlorooctadecyl	41 10	1 12	1.90	39.06	1 28	3.52	0.95	
95	16-Chlorooctadecyl	41 47	1 13	1.90	30.06	1 31	3.60	0.95	
96	17-Chlorooctadecyl	41 47	1 13	1.02	40.35	1 33	3.63	0.90	
97	18-Chlorooctadagyl	47 06	1 17	1.92	43 60	1 42	3.03	1.01	
21	10-Chiorooctauceyi	74.70	1.1/	1.77	+3.37	1.43	3.74	1.01	

* Absolute retention times (min) measured from Figs. 1 and 2.

** Relative retention time for the corresponding parent ester taken as 1.00.

*** Relative retention time for *n*-tetradecane (C_{14}) taken as 1.00. Absolute retention time of *n*-tetradecane: 21.59 min (SE-30) and 11.11 min (OV-351).

⁸ Relative retention times for compounds on SE-30 taken as 1.00.

QUARTZ CAPILLARY Conditions as shown in I	COLUMNS rigs. 1 and 2.	
Column	Elution order of compounds*	
SE-30	1 2 3 4 5 6 7 8 1 2 9 3 4 5 6 7 8 9 1 2 310 4 5 6 7 8 9 10 1 2 311 4 910 9 9 9 9 9 911 9 91010 9101010101012 10 10 11 11 11 1011 11 11 11 11 12 12 12 11 12	
OV-351	1 2 1 3 4 5 2 6 7 1 8 3 4 5 6 2 7 1 8 9 3 4 5 6 9 2 7 8 10 9 10 3 4 9 10 11 9 9 12 10 9 9 9 10 9 9 11 9 19 10 10 10 11 10 12 14 10 10 11 11 11 9 12 11 11 10 11 11 12 12	
SE-30 (continued)	5 ⁶ 7891011121234567891011121345678910111213141234567891011 12121214121212121214141414141414141614141414	
OV-351 (continued)	5 6 7 8 9 11 1 10 11 2 12 3 4 5 6 7 8 9 10 11 1 12 13 2 14 3 4 5 6 7 8 9 10 11 12 12 12 12 12 11 16 14 12 12 14 12 14 14 14 14 14 14 14 18 16 14 16 16 16 16 16 16 16 16 16 16	

stituent, the lower number the alcohol chain length (e.g., 3 denotes 8-chlorononyl acetate) * Notation of compounds: 9-18 are the parent esters from nonyl acetate (9) to octadecyl acetate (18); the upper number indicates the position of the Cl subOV-351 (continued)

SE-30 (continued)

97

ELUTION ORDER OF ALIPHATIC C9-C18 n-ALKYL ACETATES AND THEIR MONOCHLORINATED DERIVATIVES ON SE-30 AND OV-351

TABLE II

Fig. 3. Isomer distribution of monochlorinated C_9-C_{18} *n*-alkyl acetates based on GC analyses on an OV-351 quartz capillary column. \bullet , Observed values; O, estimated values; averages of two independent chlorination processes, agreeing to within $\pm 3\%$.

Isomer distribution

Fig. 3 illustrates the isomer distribution of the monochlorinated products based on GC analyses on OV-351. Owing to the overlapping, the amounts of the midchain isomers of the C_{12} - C_{18} esters are estimates^{9,10}. The amounts of the isomers are assumed to increase with increasing distance between the chloro and the ester groups, as in the case of the resolved $(C_9 - C_{11})$ isomers. In the absence of model samples, the isomer distributions are determined without weight response correction factors¹¹. It seems evident, however, that the true proportions of the 1-chloroalkyl esters, owing to their instability¹, are greater than those presented. Table III gives the relative amounts of products, tabulated relative to the ω -chloro isomers (= 100). The results are in good agreement with those of the lower homologues reported earlier^{1,2}, the main products always being the $(\omega - 1)$ -chloro isomers. Table III shows that the relative amounts of the 1-chloro isomers remain unchanged in C9-C12 esters, but decrease with increasing chain length. The small amount of 1-chlorooctadecyl acetate found indicates its lower stability compared with the other isomers. Additional evidence of the instability of the long-chain chloro isomers could be observed using isothermal operating conditions at high temperatures (220-260°C). The response of the isomers decreased strongly and new peaks were detected in the chromatograms just after the peak of the parent ester. These new compounds are evidently unsaturated *n*-alkyl acetates, formed by the dehydrochlorination of the chloroalkyl

TABLE III

Isomeric	n-Alkyl acetate, chain length							
ester	C9	<i>C</i> ₁₀	<i>C</i> ₁₁	C ₁₂	C ₁₄	C ₁₆	C ₁₈	
1-Cl	24	24	24	24	18	14	9	
2-C1	57	55	56	57	52	49	47	
3-Cl	117	114	115	119 '	116	116	114	
4-Cl	139	135	138	138	134	131	126	
5-C1	153	148	146	146	138	135	130	
6-C1	166	158	154	152	141	137	135	
7-C1	177	166	161	159	145	139	137	
8-C1	180	174	168	165	148	143	142	
9-C1	100	178	172	171	152	145	144	
10-Cl		100	175	176	155	149	147	
11-Cl			100	179	159	151	149	
12-Cl				100	163	153	151	
13-Cl					166	157	153	
14-Cl					100	159	156	
15-Cl						163	158	
16-Cl						100	163	
17-Cl							165	
18-Cl							100	

RELATIVE AMOUNTS* OF MONOCHLORINATED ISOMERS FORMED IN THE CHLORINATION OF ALIPHATIC C_9-C_{18} *n*-ALKYL ACETATES

* Relative to the ω -chloro isomers (= 100); the values are averages of two independent experiments and agree to within $\pm 3\%$. Values for the 6-chloro to the (ω - 5)-chloro isomers of C₁₂-C₁₈ esters are estimates. acetates during GC analysis at high temperature. Owing to the dehydrochlorination the peaks of some 1-chloroalkyl acetates are not detected.

ACKNOWLEDGEMENTS

Financial support for this work was provided by the Foundation for Research on Natural Resources in Finland and the Leo and Regina Wainstein Foundation. This aid is gratefully acknowledged.

REFERENCES

- 1 I. O. O. Korhonen, Acta Chem. Scand., Ser. B, 36 (1982) 721.
- 2 I. O. O. Korhonen, Acta Chem. Scand., Ser. B, 37 (1983) 39.
- 3 I. O. O. Korhonen, J. Chromatogr., 246 (1982) 241.
- 4 I. O. O. Korhonen, J. Chromatogr., 248 (1982) 69.
- 5 J. D. Edvards, W. Gerrard and M. F. Lappert, J. Chem. Soc., (1957) 353.
- 6 I. O. O. Korhonen and J. N. J. Korvola, Acta Chem. Scand., Ser. B, 35 (1981) 139.
- 7 I. O. O. Korhonen, J. Chromatogr., 211 (1981) 267.
- 8 I. O. O. Korhonen, J. Chromatogr., 219 (1981) 306.
- 9 I. O. O. Korhonen and J. N. J. Korvola, Acta Chem. Scand., Ser. B, 35 (1981) 673.
- 10 I. O. O. Korhonen, Acta Chem. Scand., Ser. B, 36 (1982) 397.
- 11 I. O. O. Korhonen and J. N. J. Korvola, Acta Chem. Scand., Ser. B, 35 (1981) 461.